Scientific Calculator

Expression

Enter mathematical expressions on multiple lines. Press Shift+Enter or click Calculate to evaluate.

Variables

Currently defined variables

No variables defined yet

History

Recent calculations (use ans or _)

No history yet

Examples

Basic: 2 + 3 * 4, (5 - 2)^3
Power: 2^8, 10**3, 4^0.5
Functions: sin(pi/2), sqrt(16), log10(100)
Complex: 2 + 3j, sqrt(-1), j^2
Variables: x = 5, y = x * 2
History: ans * 2, _ + 10

Available Functions

Trig: sin, cos, tan, asin, acos, atan
Power: sqrt, cbrt, exp, pow(a,b)
Log: log, log10, log2
Rounding: round, ceil, floor, abs
Complex: i or j (√-1), re(), im(), conj(), arg()
Other: factorial(n), gcd, lcm
Constants: pi, e, tau

Quick Reference Guide

Comprehensive list of available functions and usage examples

Getting Started

Enter mathematical expressions and press Enter or click Calculate to evaluate.

Variables can be assigned and reused: x = 5, then use x * 2

Access previous result with ans or _

Operators

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo
^ or ** Power (exponentiation)
( ) Parentheses for grouping

Functions by Category

Trigonometric

sin(x), cos(x), tan(x)
asin(x), acos(x), atan(x)
atan2(y, x)
sinh(x), cosh(x), tanh(x)

Exponential & Log

exp(x) - e^x
log(x) - natural log (ln)
log10(x) - base 10
log2(x) - base 2
sqrt(x) - square root
cbrt(x) - cube root

Rounding

round(x) - nearest integer
ceil(x) - round up
floor(x) - round down
abs(x) - absolute value
sign(x) - sign of number

Complex Numbers

i or j - imaginary unit (√-1)
re(z) - real part
im(z) - imaginary part
conj(z) - conjugate
arg(z) - argument (angle)
abs(z) - magnitude

Number Theory

factorial(n) - n!
gcd(a, b) - greatest common divisor
lcm(a, b) - least common multiple
mod(x, y) - modulo

Statistics

min(a, b, ...) - minimum
max(a, b, ...) - maximum
mean(a, b, ...) - average
median([a, b, ...]) - median

Other

pow(a, b) - a^b
hypot(a, b) - √(a²+b²)
random() - 0 to 1

Mathematical Constants

pi 3.14159...
e 2.71828...
tau 6.28318... (2π)
phi 1.61803... (golden ratio)

Practical Examples

Circle Calculations
r = 5
area = pi * r^2 → 78.5398...
circumference = 2 * pi * r → 31.4159...
Temperature Conversion
celsius = 25
fahrenheit = celsius * 9/5 + 32 → 77
Quadratic Formula
a = 1, b = -5, c = 6
x1 = (-b + sqrt(b^2 - 4*a*c)) / (2*a) → 3
x2 = (-b - sqrt(b^2 - 4*a*c)) / (2*a) → 2
Compound Interest
principal = 1000
rate = 0.05
years = 10
amount = principal * (1 + rate)^years → 1628.89

Complex Number Examples

Basic Complex Operations
z1 = 3 + 4j → 3 + 4j
z2 = 1 - 2j → 1 - 2j
z1 + z2 → 4 + 2j
z1 * z2 → 11 - 2j
Complex Functions
sqrt(-1) → j
j^2 → -1
exp(j * pi) + 1 → 0 (Euler's identity)
abs(3 + 4j) → 5
Complex Properties
z = 3 + 4j
re(z) → 3 (real part)
im(z) → 4 (imaginary part)
conj(z) → 3 - 4j (conjugate)
arg(z) → 0.927... (angle in radians)
Quadratic with Complex Roots
a = 1, b = 2, c = 5
discriminant = b^2 - 4*a*c → -16
x1 = (-b + sqrt(discriminant)) / (2*a) → -1 + 2j
x2 = (-b - sqrt(discriminant)) / (2*a) → -1 - 2j

Tips & Tricks

Use parentheses to control order of operations: (2 + 3) * 4 = 20 vs 2 + 3 * 4 = 14
Chain calculations using ans: 100 + 50, then ans / 3
Store intermediate results in variables for complex calculations
Angles in trigonometric functions are in radians. Use sin(45 * pi/180) for degrees
Use j for complex numbers (engineering notation). Example: 3 + 4j or sqrt(-1) returns j
All functions automatically handle both real and complex inputs. Try sin(j) or exp(j * pi)
Click on any history item to reuse that expression

For advanced calculations and data analysis, use Google Colab